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The operator formalism of classical statistical dynamics 
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Abstract. The consistency of some assumptions made by Martin, Siggia and Rose in their 
operator formalism for the statistical dynamics of classical systems is demonstrated. This is 
achieved by the introduction of a simple representation for the operators involved. 

1. Introduction 

In a recent paper Martin et a1 (1973) have developed a new formalism for the discussion 
of the statistical dynamics of classical systems. They have pointed out the desirability of 
obtaining for classical systems a theory with the power and generality of the functional 
methods of Schwinger or the perturbation theory of Feynman which have proved so 
useful in quantum theory. The most serious attempts to develop such an approach for 
classical systems have been made in turbulence theory by Wyld, Kraichnan and Edwards 
(for references see Martin et a1 1973). However, as Martin et a1 point out, the work of 
Wyld is correct only to fourth order in the anharmonicity because of an incorrect vertex 
renormalization. This flaw was recognized by Kraichnan who pointed out the necessity 
of introducing three vertex functions and, in unpublished work, derived the correct 
renormalized expansions. The formalism of Martin et a1 provides a much simpler 
derivation of these results. The theory of Edwards is of a rather different sort involving 
no vertex renormalization and is limited to turbulence maintained by stirring forces with 
delta function time correlations. The formalism of Martin et a1 suggests how this theory 
may be generalized as will be described later. 

In the work of Martin et a1 a novel procedure is adopted which enables a Schwinger- 
type functional formalism to be developed and renormalized expansions obtained. This 
will now be briefly described. The basic dynamical variables of the system are denoted 
by $( 1) where 1 represents a time t ,  together with spatial coordinatesx, or other variables, 
either discrete or continuous, depending on the particular system under investigation. 
The quantity II/ is taken to satisfy an equation of motion of the form 

where U,,  U 3  contain delta functions in the time differences 
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Examples of systems which permit of such a description are the damped anharmonic 
oscillator, a system of particles interacting through two-body forces, and a Navier-Stokes 
fluid. 

A probability distribution is specified for the initial values of $ and the problem is to 
determine the correlation functions of values of $ at subsequent times. Martin et a! 
point out that, whereas for a quantum mechanical system expectation values of products 
of the field operator $ and its Hermitian conjugate describe both correlations in 
the system and its response to external perturbations, for the classical system no counter- 
part of $+ appears and so the response functions do not enter automatically into the 
theory. This defect they remedy by introducing an operator $ which satisfies the equal- 
time commutation relations 

[$(x, t ) ,  $w, 01 = d(x - 1') 

together with an equation of motion and certain other conditions. This operator is 
interpreted as an excitation operator which causes small perturbations of $I. The 
justification for this interpretation is not given in the paper and it is implied that it 
consists of verifying that the formal expressions presented for correlation and response 
functions in terms of $, $ give the correct perturbation series for these quantities to the 
first few orders. 

In this paper we should like to give a representation of the operator $ in order to 
clarify the formalism and check its self-consistency. This is done by interpreting $ and $ 
as operators acting on functions of the initial values of $. We shall actually consider a 
more general equation of motion than the one written above. 

2. Derivation of the operator formalism 

The basic dynamical variables of the system are denoted by $,,(t) where n is an index 
which can be either discrete or continuous. We shall here treat n as discrete to keep the 
notation simple without any loss of generality. The values of I),,([) at the initial instant 
t = 0 are denoted by $,, . We assume that the initial data have a probability distribution 
specified by a density function p ( 4 )  where q?I denotes the set q ? 1 2 ,  . . .) of all the 
variables. The equation of motion is taken to be 

$At)  = W$W, t )  (1) 

where the Cl,, are given functions of $(t) and t. 

by Greek capital letters) which satisfy the condition 
We now consider a set of real functions of the initial values @(q?I), Y(q?I), etc (denoted 

so that they can be regarded as elements of a real Hilbert space 2 in which is defined 
the scalar product 

(a), = w, 0) = J- d4P(4)Wq?I)@(4). 

If we assume that the equation of motion (1) determines $(t) uniquely in terms of 4, then 
the quantity @($(t)) can be regarded as a function of and will be written Ot(4). This 
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can be taken as arising from the action on @(4) of a linear operator E(?) ,  

@L4) = E ( W 0 ) .  (2) 

An equation of motion for the operator E(t )  may be easily derived from (1) and (2) : 

where the comma notation denotes differentiation, and a summation over repeated 
indices is implied. Thus 

B(t)@.(4) = Q,,($(t), t)@,,,($b)) = E(t)%(4, W,,,(41. 

E(?)  = E ( t ) Y ( t )  (3) 

Hence 

where Y(t) denotes the operator Qfl(4,t)(a/d@,,). Since E(0) = 1 we may write the 
integral equation 

E(?) = 1 + dTE(r)Y(T). sd 
An equation for the inverse operator 
identity 

E(t )E- ' ( t )  = 1. 

We have 

E - ' ( [ )  may be obtained by differentiating the 

d 
- E -  ' ( t )  = - E -  ' ( t )E( l )E-  '(f) = - Y ( t ) E -  ' ( t ) .  
dt 

(4) 

For future reference it is convenient to note that the operator X ( t , t ' )  defined as 
E -  '(t ')E(t) satisfies the equation 

We now define operators acting in %' in the following way 

where 4,, is to be regarded as the operator corresponding to multiplication by #,,. It is 
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and we shall henceforth denote this operator by the same symbol $,,(t) .  
The equal-time commutation relations follow from the definitions 

and we also have 

The equations of motion follow from those of E(t )  and E -  ' ( r ) :  

where L(t)  denotes the operator E ( t ) Y ( t ) E -  ' ( r ) .  We can write 

and the equations of motion are 

(From the equation of motion for B,(t) it can be shown that this operator may be equated 
to a/atj,(t), where it is understood that the function of (b on which it acts is rewritten as a 
function of $(t).) 

It is convenient at this stage to introduce the adjoint B: of the operator En in the 
usual way : 

(BpIJ, @) = (Y, B,,@). 

The operator Bt coincides with the operator $n of Martin et a1 as will soon become 
apparent. The operator $,,(t) is clearly self-adjoint. Taking the adjoint of the commuta- 
tion relations gives 

[$At), $ m ( t ) ~  = 0 

[$At), $m(t)l = 6 n m  

-$At)  = - $m(wL,n($(~), t ) .  

while the adjoint of the equations of motion gives 

d -  
dt 
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If the equation of motion of $ is of the form 

then we have 

which agrees with the equation given by Martin er al. 

3. Formal expressions for correlation and response functions 

To obtain formal expressions for correlation and response functions in terms of the 
operators $, $ we now introduce the unit function O0 which plays the role of the vacuum 
state 

Q0((#l) E 1. 

Correlation functions can then be written in the form of vacuum expectation values, for 
example 

where t” denotes expectation value. Using the commutativity of the $ this can be re- 
written as 

Here T is the usual chronological ordering which arranges operators in order of in- 
creasing time from right to left, so that for example 

T { A ( ~ ) B ( ~ ) c ( ~ ) )  = e(i, 2 )e (2 ,3 )~ (1 )~ (2 )~ (3 )+e (2 ,  i)e(i, ~ ) B ( ~ ) A ( I ) c ( ~ ) +  . . . 

where e( 1,2) denotes 

t l  ’ t 2  { r ,  < t2 .  
e( t ,  - t 2 )  = 

It is understood that if a $ and a 4 operator in a Tproduct have the same time then $ 
stands to the left of $. 

To investigate the response functions of the system we now suppose that Q , ( $ ( r ) ,  C) 
involves an external force f,(t) additively, so that 

Q”($(t), t )  = L(t) + Afl($(t), t )  

where A does not explicitly depend on f: 
We first evaluate the functional derivative 6E(t)/6fm(t’). Differentiating the identity 

E(t )  = 1 + j: d.rE(r)Y(r) 
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gives 

Clearly we have 

which is simply an expression of causality, while for t > t' we may write 

where X ,  satisfies the equation 

X J t ,  t ' )  = 1 + drX,(r, r ' ) 9 ( r ) .  s,: 
Comparison of this with (5) shows that X J t ,  t ' )  is in fact independent of m and is equal to 
E -  '( t ' )E(t) .  We can therefore write 

6E(') a 
~ = e(t - t')E(t')---E- ' ( t ' ) E ( t )  = e(t - t')B,(t')E(t) 
s f m ( t ' )  a $ m  

Similarly 

From these results it follows that 

and taking the adjoint, 

similarly 
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Using (7) and (8) we can write operator expressions for response functions, for 
example 

and since (m0, $a) = 0, this can be rewritten as a T product, 

(00 3 T{$n(t)$m(rO}mo).  

Similarly we have 

This completes the demonstration of the consistency of the operator formalism. 

4. The functional formalism 

Taking these formal expressions for correlation and response functions together with 
the equations of motion of the operators involved, it is a simple matter to generate the 
infinite hierarchy of equations satisfied by these quantities. It is more convenient 
however to introduce a generating functional in the manner of Schwinger. The idea of 
replacing the infinite hierarchy by a single functional differential equation goes back 
to the work of Hopf in turbulence theory and has been developed in this field by Edwards 
(1964), Herring (1966) and others. (These later authors formulate their theories in terms 
of the probability density function rather than the characteristic functional which is the 
generating functional of Hopf. Since these quantities are just functional Fourier trans- 
forms of each other it is easy to express this later work in Hopf’s formalism.) This work 
has suffered from some basic limitations however. Firstly the generating functionals 
used have not borne any simple relation to the response functions which therefore do 
not appear naturally in the theory. In addition they have usually been of the single-time 
variety so that non-simultaneous correlations are difficult to handle. Also it has not 
been possible to deal in a general manner with the situation in which a random stirring 
force acts on the system. This is necessary for a discussion of statistically stationary 
states of dissipative systems, such as stationary turbulence of a Navier-Stokes fluid. The 
only sort of random force which it has been found possible to treat in these theories is 
one having delta function time correlations, since only in this case can a closed equation 
for the characteristic functional be obtained. 

The new operator formalism enables these problems to be solved in a simple way. 
We now take the equations of motion as 

$At )  = .f,(t) + ~ n ( $ ( r L  t )  

$ A t )  = - $ m ( t ) A m , n ( + ( l ) ,  t )  

where f is a Gaussian random function of zero mean with a correlation function given by 

(fn(t)fm(t’)) = R n m ( t ,  r’). 
Furthermore it is assumed that f is statistically independent of the initial values of $. 
Expectation values with respect. to the distribution off are denoted by angular brackets 
as above. 
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The generating functional is given by 

Z[(,VI= ( ~ 0 9  ( ~ e x p  j d r { ( n ( r ) $ n ( r ) + V n ( f ) ~ n ( r ) } ) Q o ~  

where < and q are suitably well behaved test functions. We shall adopt a shorthand 
notation in which ((1) denotes <,,(tl) and J d l  denotes &,:,,Jdt, etc. Forming the func- 
tional derivative SZ/S((l), differentiating with respect to t, and using the. equation of 
motion for $, we obtain 

where we have written 42)  for ((2)1(/(2)+q(2)$(2), ie c,(t) = 4 , ( f )$ , ( r )+  v,,(t)$,(t) (no 
summation over n). 

The first term on the right-hand side arises from the differentiation of the step func- 
tions implicit in the time ordering while the remaining terms come from J(1). The only 
complication here which does not appear in the usual Schwinger theory is the last term 
on the right which has not yet been expressed in terms of Z. This however may be 
accomplished by making use of a theorem due to Novikov (1965): that if A[f] is any 
functional of the Gaussian random function f then 

I t  may be verified that the result is also true if A is an operator functionally dependent 
on f. Applying this result to the terms involving f enables them to be reduced to T 
products of the operators $, 4. For example, 

j d2J  d3 J d4(@0, (T{f(l)c(2)c(3)c(4)})Qo) 

= 3 ! d2 d3 d46(2,3)8(3,4)(@, , (f(  l)c(2)c(3)c(4))Q0) I S S  
(since f commutes with c) 

= 3! 1 d 2 . .  . j d56(2,3)6(3,4)R(l, 5 ) (  @.,( &2)c(3)c(4))Qo) 
6f ( 5 )  
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Combining all such terms gives finally 

Dealing in the same way with (a/at,)(SZ/dq( 1)) we obtain the functional differential 
equations 

For the equations of motion considered by Martin et a1 these become 

These equations may be used as a convenient basis from which to develop the 
renormalized expansions as described by Martin et al. They also reveal the interesting 
fact that, as far as the calculation of correlation and response functions is concerned, 
nothing is changed if in the equations of motion for \i/ we replace f(1) byJd2R(1,2)$(2), 
provided that R(1,2) contains a delta function d ( t ,  - t 2 ) .  (It is stated by Martin et ai 
that this result is valid for general R but our argument does not suggest this.) 

The equations (9) and (10) may be used to derive another equation for Z which 
characterizes a statistically stationary state (eg stationary turbulence). . For a stationary 
situation it is apparent that Z will be unchanged if the test functions 5 , ~  are replaced by 
the ‘time-shifted’ test functions defined by 

P ( x ,  t )  = t(x, t - T )  

f’)(x, t )  = ~ ( x ,  t - 5 ) .  

This then shows that 

which may be expressed in the form 

Substituting from (9) and (10) gives 

H Z = O  
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where H is the functional differential operator 

For the equations of motion of Martin et al, H is given by 

This equation seems to provide what Edwards (1964) refers to as the Lagrangian 
description of stationary turbulence (although this terminology is perhaps misleading), 
which he attempted to formulate in terms of the characteristic functional or, equiva- 
lently, in terms of the probability density. However, the derivation of such a closed 
equation in terms of the characteristic functional appears to be impossible. The equation 
(1 1) does not have a unique solution but it is possible to derive a series solution which 
automatically satisfies the more basic equations (9) and (10). Such methods have been 
investigated in the context of the quantum many-body problem by Edwards and 
Sherrington (1967) and it seems likely that an analogous theory could be based on (1 1) 
for problems such as stationary turbulence. Such a theory should not be confused with 
the single-time functional formalism for turbulence given by Edwards (1964). Inciden- 
tally it is apparent that the basic equation of the Edwards approach to the quantum 
many-body problem may be derived more easily by a method like the one given above : 
we simply take the Schwinger equations for the system and impose on them the con- 
dition that the time-shift operation should leave the generating functional unchanged. 
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